Human ColorVision and Colorimetry

Hirohisa Yaguchi
Graduate School of Advanced Integration Science Chiba University

Contents

- Human color vision
- Various color phenomena
- Colorimetry

Color imaging

TV (CRT, LCD, etc) additive color mixture

Printing subtractive color mixture

Thomas Young (1802)

Trichromatic theory

(a)

(e)

(b)

(f)

(j)

(c)

(g)

(k)

(d)

(h)

(I)

- 5 arcmin
- 2 פtcuมแ

Joseph Carroll, Daniel C. Gray, Austin Roorda and David R. Williams,
Optics \& Photonics News, vol. 16, 36-41 (2005)

Cone spectral sensitivities

Msィe|euafu' y (uw)
A. Stockman and L.T. Sharp, Vision Research, vol. 40, I7 I I-I737 (2000)

Why three?

Dichromat

We are dichromats.

We are trichromats.

M.A. Changizi, Q. Zhang, S. Shimojo, Bare skin, blood and evolution of the primate colour vision, Biol. Lett., doi. I 1 . $1098 /$ rebl. 2006.0440

$$
\text { Light } \rightarrow \text { Eye } \rightarrow \text { Brain } \rightarrow \text { Color }
$$

http://www.psy.ritsumei.ac.jp/~akitaoka/LorealWS2005.html

Color contrast

http://www.psy.ritsumei.ac.jp/~akitaoka/LorealWS2005.html

Color assimilation

http://www.psy.ritsumei.ac.ip/~akitaoka/LorealWS2005.html

Color contrast and color assimilation

Color Vision and History of Colorimetry

Physiology
Retina
rods and cones
Horizontal cells
Bipolar cells
Amacrine cells
Ganglion cells

ColorVision Model

Basic Colorimetry Wyszecki (1973)

- Colorimetry is a tool used to making a prediction on whether two lights of different spectral power distributions will match in color for certain given conditions of observation. The prediction is made by determining the tristimulus values of the two visual stimuli. If the tristimulus values of a stimulus are identical to those of the other stimulus, a color match will be observed by an average observer with normal color vision.

Color matching and colorimetry (Three colorimetric systems)

- Physical system (RGB)
- Physiological system(LMS)
- Mathematical system (XYZ)

Color matching and colorimetry

Three factors define color

$$
\begin{aligned}
\text { Color }= & \text { Light } \cdot \text { object } \cdot \text { eye } \\
L & =\int E(\lambda) \rho(\lambda)(\lambda) d \lambda \\
M & =\int E(\lambda) \rho(\lambda) m(\lambda) d \lambda \\
s & =\int E(\lambda) \rho(\lambda) s(\lambda) d \lambda
\end{aligned}
$$

Tristimulus values are obtained by the spectral power and the color matching functions.

$$
\begin{aligned}
& R=\int L_{e, \lambda} \bar{r}(\lambda) d \lambda \\
& G=\int L_{e, \lambda} \bar{\lambda}(\lambda) d \lambda \\
& B=\int L_{e, \bar{b}} \bar{b}(\lambda) d \lambda
\end{aligned}
$$

Unrelated color (aperture color)

$$
\begin{aligned}
& X=\mathrm{K}_{\mathrm{m}} \int L_{e, \lambda} \bar{x}(\lambda) d \lambda \\
& Y=\mathrm{K}_{\mathrm{m}} \int L_{e, \lambda} \bar{y}(\lambda) d \lambda \\
& Z=\mathrm{K}_{\mathrm{m}} \int L_{e, \lambda} \bar{z}(\lambda) d \lambda \\
& \mathrm{~K}_{\mathrm{m}}=683(\mathrm{~lm} / \mathrm{W})
\end{aligned}
$$

Related color (object color)

$$
X=k \int E(\lambda) \rho(\lambda) \bar{x}(\lambda) d \lambda
$$

$$
Y=k \int E(\lambda) \rho(\lambda) \bar{y}(\lambda) d \lambda
$$

$$
Z=k \int E(\lambda) \rho(\lambda) \bar{z}(\lambda) d \lambda
$$

$$
k=\frac{100}{\int E(\lambda) \bar{y}(\lambda) d \lambda}
$$

$$
\begin{aligned}
& L=\int L_{e, \lambda} \bar{l}(\lambda) d \lambda \\
& M=\int L_{e, \lambda} \bar{m}(\lambda) d \lambda \\
& S=\int L_{e, \lambda} \bar{s}(\lambda) d \lambda
\end{aligned}
$$

Color address

CIEI93I (x, y) chromaticity diagram

We don't see light but the object.

Advanced Colorimetry Wyszecki (1973)

- Colorimetry is its broader sense includes methods of assessing the appearance of color stimuli presented to the observer in complicated surroundings as they may in occur in everyday life. This is considered the ultimate goal of colorimetry, but because of its enormous complexity, this goal is far from being reached.

CIELAB (CIE 1976 L*a*b*)

- Color adaptation

$$
\begin{aligned}
& L^{*}=116\left(\frac{Y}{Y_{n}}\right)^{\frac{1}{3}}-16 \\
& a^{*}=500\left\{\left(\frac{X}{X_{n}}\right)^{\frac{1}{3}}-\left(\frac{Y}{Y_{n}}\right)^{\frac{1}{3}}\right\} \\
& b^{*}=200\left\{\left(\frac{Y}{Y_{n}}\right)^{\frac{1}{3}}-\left(\frac{Z}{Z_{n}}\right)^{\frac{1}{3}}\right\}
\end{aligned}
$$

- White is always white
- Non-linearity
- Physical unit to psychological unit
- Color opponency
- Luminance and chromaticness

Non-linearity

Color opponency

The most advanced CIE colorimetric system (CIECAM02)

