Contents

Nano-Imaging and Human Color
Vision
Hirohisa Yaguchi

Additive and Subtractive Color Mixture

(Billmeyer and Saltzman's principles of color technology, Roy S. Berns)

\square Principle of color reproduction

- Metamerism
\square Human color vision model
\square CIE colorimetry
\square Advanced colorimetry

Printing, Photography (subtractive color mixture)

Spectral Color Reproduction of Additive and Subtractive Color Mixture

Additive color mixture

Subtractive color mixture

Metamerism of automotive headlamps (HID and LED)

- These spectral power distributions are different with each other.
- These chromaticity coordinates are the same.

Different colour

HID LED_W

Trichromatic theory Any color can be color matched
by a mixture of three color stimuli.
$P(\lambda) \neq Q(\lambda)$

$L=\int_{\lambda} P(\lambda) l(\lambda) d \lambda=\int_{\lambda} Q(\lambda) l(\lambda) d \lambda$
$M=\int_{\lambda} P(\lambda) m(\lambda) d \lambda=\int_{\lambda} Q(\lambda) m(\lambda) d \lambda$
$S=\int_{\lambda} P(\lambda) s(\lambda) d \lambda=\int_{\lambda} Q(\lambda) s(\lambda) d \lambda$

Color matching experiment

Results of color matching

Human Visual Information Processing

- Eye balls: Optical system
- Retina: High intelligent input device - Photoreceptors (Rods and Cones) - $\begin{gathered}\text { LHminance and chizontal cels) } \\ \text { (Hromatic channels }\end{gathered}$ - Contrast (Ganglion cells)
- LGN: Parallel information processing - Magno path (where?): place, motion - $\begin{aligned} & \text { Parvo path (what?): shape, color, texture, } \\ & \text { detail }\end{aligned}$
- Primary visual cortex
- $\begin{aligned} & \text { Parietal stream and Inferotemporal } \\ & \text { stream }\end{aligned}$

Cone Mosaic

Joseph Carroll, Daniel C. Gray, Austin Roorda and David R. Williams, Optics \& Photonics News, vol. 16, 36-41 (2005)

Retinal images by the adaptive optics (A. Roorda and D. Williams, Nature, 1999)

Adaptive Optics Retina Camera

Why blue on black and yellow on white look blurred?

Spectral Sensitivities of Cone

Opponent Color Theory Hering's Color Circle

A Color Opponent Cell of the Retinal Ganglion Cell

Red sensitive and green inhibited

Receptive Fields of Retinal Ganglion Cells

Double Opponent Color Cell

Same response

Spectral Selectivity of the V4 Cells in the Visual Cortex (Zeki)

Basic Colorimetry
 Gunter Wyszecki (1973)

\square Colorimetry is a tool used to making a prediction on whether two lights of different spectral power distributions will match in color for certain given conditions of observation. The prediction is made by determining the tristimulus values of the two visual stimuli. If the tristimulus values of a stimulus are identical to those of the other stimulus, a color match will be observed by an average observer with normal color vision.

Color Vision Model

Color Matching Experiment

Basic Colorimetric System

Color Matching and Tristimulus Values

\square LMS (Physiological system)

- How many photons are absorbed in L, M, and S cone system?
\square RGB (Physical system)
- How much red, green and blue light are needed to make a color match?
\square XYZ (Mathematical system)
- To make a color match using three imaginary stimuli

LMS: Physiological Colorimetry

RGB: Physical Colorimetry

XYZ: Mathematical Colorimetry
CIE 1931 (x, y) Chromaticity Diagram

Advanced Colorimetry

 Gunter Wyszeki (1973)- Colorimetry is its broader sense includes methods of assessing the appearance of color stimuli presented to the observer in complicated surroundings as they may in occur in everyday life. This is considered the ultimate goal of colorimetry, but because of its enormous complexity, this goal is far from being reached.

CIELAB (CIE 1976 L******) *

$$
\begin{aligned}
& L^{*}=116\left(\frac{Y}{Y_{n}}\right)^{\frac{1}{3}}-16 \\
& a^{*}=500\left\{\left(\frac{X}{X_{n}}\right)^{\frac{1}{3}}-\left(\frac{Y}{Y_{n}}\right)^{\frac{1}{3}}\right\} \\
& b^{*}=200\left\{\left(\frac{Y}{Y_{n}}\right)^{\frac{1}{3}}-\left(\frac{Z}{Z_{n}}\right)^{\frac{1}{3}}\right\}
\end{aligned}
$$

- Color adaptation
- White is always white
- Non-linearity
- Physical unit to psychologicall unit
- Color opponency
- Luminance and chromaticness

CIELAB Color Space
UCS: Uniform Color Space

L*

12

Application of CIECAM02

Color reproduction between different imaging media

Display
Print

Assignment

\square Discuss relation between your research project and color.

- Report
- Dead line; January 16, 2012
- Send by e-mail; yaguchi@faculty.chiba-u.jp
- Your report should be written in English with MS Word or pdf.

The Material of this Lecture

- Available at http://vision-lab.tp.chiba-u.jp/~yaguchi/

